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Abstract

The transient process of the thermocapillary convection was obtained for the large Pr ¯oating half zone by using the

method of three-dimensional and unsteady numerical simulation. The convection transits directly from steady and

axisymmetric state to oscillatory ¯ow for slender liquid bridge, and transits ®rst from steady and axisymmetric con-

vection to the steady and non-axisymmetric convection, then, secondly to the oscillatory convection for the fatter liquid

bridge. This result implies that the volume of liquid bridge is not only a sensitive critical parameter for the onset of

oscillation, but also relates to the new mechanism for the onset of instability in the ¯oating half zone convection even in

case of large Prandtl number ¯uid. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The thermocapillary convection in a ¯oating half

zone as shown in Fig. 1 is a typical subject of micro-

gravity science, and has been studied extensively in the

last two decades. The volume of liquid bridge is a sen-

sitive critical geometrical parameter for the onset of

oscillatory convection in the ¯oating half zone of large

Prandtl number, as analyzed by Cao et al. [1], Monti

et al. [2], Hu et al. [3], Shevtsova and Legros [4], Tang

and Hu [5]. The marginal curves for onset of oscillatory

thermocapillary convection in case of larger Prandtl

number divide into two branches relating, respectively,

to the slender liquid bridge and fat liquid bridge as show

in Fig. 2. There is typically a gap region between two

marginal curves, and the gap region associates with

larger critical Marangoni number. However, the gap

may be disappeared and two curves connect to form a

cusp if the geometrical aspect A is small. The micro-

gravity experiments were performed with the drop shaft

facility by Yao et al. [6] and Sakurai and Hirata [7].

Recently, similar conclusion was obtained by the linear

instability analysis for the case of the microgravity

environment, but the in¯uence of liquid bridge volume

on the onset of oscillation is quite di�erent in cases of

smaller Prandtl number [8] in comparison with the cases

of large Prandtl numbers [9].

There is usually one bifurcation transition of ther-

mocapillary convection in a liquid bridge of large

Prandtl number, that is, the transition from the steady

and axi-symmetric thermocapillary convection to the

oscillatory convection. The conclusion have been proved

by many experiments, at ®rst by Chun and Wuest [10],

and also, by Schwabe and Scharmann [11]. The linear

instability analysis have been given by Neitzel et al. [12],

Wanschura et al. [13], Chen et al. [14], Chen and Hu [9]

and Chen et al. [8]. The energy stability analysis was

given by Neitzel et al. [15]. The unsteady and three-

dimensional numerical simulation were reported by

Savino and Monti [16], Yasuhiro et al. [17] and Tang

and Hu [5]. Both experimental and theoretical works

were conducted in case of large Prandtl number to study

the onset from the steady and axi-symmetric convection

to oscillatory convection. Some results support the idea

of hydrothermal wave instability, which was suggested

early by Smith and Davis [18].

Two bifurcation transitions of thermocapillary con-

vection in a ¯oating half zone of smaller Prandtl number

Pr � 0:01 was obtained by the numerical simulation of
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Levenstam and Amberg [19], that is, the steady and axi-

symmetrical convection transits to the steady and

asymmetric convection, and then, to the oscillatory

convection. The result implies that the bifurcation

mechanism in case of small Prandtl number is hydro-

dynamic instability, but not the hydrothermal insta-

bility.

Two bifurcation transitions in a fat liquid bridge of

10 cst silicon oil of larger Prandtl number Pr � 105:6
were observed through the numerical simulation in case

of the EarthÕs gravity condition by Tang and Hu [20].

The linear instability analysis for a fat liquid bridge gives

a steady instability mode of m � 1 and xi � 0 [21] and

this instability mode associates with the ®rst transition

from the steady and axisymmetric convection to the

Nomenclature

A geometrical aspect ratio

d0 diameter of upper rod and lower rod

g gravitational acceleration

Gr Grashof number

k thermal di�usion coe�cient

l height of liquid bridge

Ma Marangoni number

p pressure

P dimensionless pressure

Pr Prandtl number

Re Reynolds number

r dimensional radial coordinate

t dimensional time

T dimensional temperature

T� dimensional reference temperature

T0 dimensional temperature of lower rod

u dimensional radial velocity

U dimensionless radial velocity

v dimensional azimuthal velocity

V dimensionless azimuthal velocity

v� typical velocity

Vl volume of liquid bridge

V0 volume of cylindrical liquid bridge

w dimensional axial velocity

W dimensionless axial velocity

z dimensional axial coordinate

Greek symbols

aT dimensionless heating rate

b thermal expansion coe�cient

dV non-axisymmetric degree of velocity

dT non-axisymmetric degree of temperature

DT temperature di�erence between upper rod and

lower rod

DTc1 ®rst critical temperature di�erence

DTc2 second critical temperature di�erence

f dimensionless axial coordinate

g dimensionless azimuthal coordinate

h dimensional azimuthal coordinate

H dimensionless temperature

m viscosity coe�cient

n dimensionless radial coordinate

q density of ¯uid

r surface tension coe�cient

s dimensionless time

w stream function

X vorticity

Fig. 2. Typical critical applied temperature di�erence depend-

ing on the volume of a liquid bridge in the ¯oating half zone

convection.

Fig. 1. Schematic diagram of a ¯oating half zone.
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steady and axial asymmetric convection. These conclu-

sions for larger Prandtl number ¯uid are similar to the

ones for small Prandtl number ¯uid discussed by

Levenstam and Amberg [19]. In the present paper, the

unsteady and three-dimensional numerical simulation is

applied to discuss the same subject in case of the mi-

crogravity environment, and the two bifurcation tran-

sitions are obtained. The physical model and the

mathematical description are discussed in Section 2.

Two bifurcation transitions in a fat liquid bridge of

larger Prandtl number are obtained during a ®xed

heating rate, and the results are discussed in Section 3.

The ®rst bifurcation in a fat liquid bridge and the

transitions of the liquid bridges with di�erent volume

ratios are given, respectively, in Sections 4 and 5. The

conclusion and discussion are summarized in Section 6.

2. Physical model and mathematical description

A liquid bridge of ¯oating half zone between two co-

axis z copper rods of same diameter d0 as shown in

Fig. 1 is discussed in the present paper, and the liquid

bridge has a height l. There are two typical geometrical

parameter: the geometrical aspect ratio A � l=d0 and

volume ratio V � Vl=V0, where Vl and V0 are, respec-

tively, the volume of liquid bridge and the volume of a

cylindrical liquid bridge of l in height and d0 in diameter.

The lower rod keeps a constant temperature T0, and the

temperature at the upper rod is T0 � DT , where positive

temperature di�erence DT may be a constant or change

with time. The isothermal case relates to DT � 0, and

the thermocapillary convection is driven by the gradient

of surface tension if there is a positive applied tem-

perature di�erence DT , because of the surface tension

r � r0 � �dr=dT ��T ÿ T��; �2:1�

where T� is a constant reference temperature, and dr=dT
is usually negative. The deviation from the steady and

axisymmetric convection may be excited during the in-

creasing of the applied temperature di�erence DT .

The thermocapillary convection in the liquid bridge is

controlled by the relationships of mass conservation,

momentum conservation and energy conservation.

Based on the Boussinesq approximation, the governing

equations in the microgravity environment may be

written mathematically as follows:

r � v � 0; �2:2�

ov=ot � v � rv � ÿr�p=q� � mDv; �2:3�

oT=ot � v � rT � jDT ; �2:4�

where q, p, T are, respectively, the density, pressure,

temperature of the liquid, v � �u; v;w� the velocity vec-

tor, D the Laplace operator, and m and k are, re-

spectively, the kinematics viscosity and thermal di�usion

coe�cients. Eqs. (2.2)±(2.4) may be written in a cylin-

drical coordinate system as adopted in Fig. 1.

Non-dimensional quantities and parameters are in-

troduced as follows.

n � r=l; g � h=l; f � z=l; s � t=�l=v��;
U � u=v�; V � v=v�; W � w=v�;

P � p=qv2
�; H � T=DT�; �2:5�

Re� � v�l=m; Ma� � v�l=j; Pr � m=j; �2:6�

where the typical velocity v� is de®ned by the thermo-

capillary e�ect as v� � jdr=dT jDT�=�qm�, dr=dT a con-

stant, DT� � T� ÿ T0 a constant applied temperature

di�erence and T� is a reference constant temperature

which is de®ned as the highest temperature at the upper

rod during a heating process. The non-dimensional

parameters are related by Ma� � Re�Pr. It is noted that

the parameters Re� and Ma� are de®ned by a constant

typical velocity v� with a ®xed temperature di�erence

DT�. The local values for a ®xed applied temperature

di�erence DT will be useful, as

Re � Re�DT=DT�; Ma � Ma�DT=DT�:

Introduce the non-dimensional vector stream func-

tion W � �Wr;Wh;Wz� and the vector vorticity X �
�Xr;Xh;Xz�, de®ned, respectively, as

r�W � V; r� V � X: �2:7�
Then, the non-dimensional equations can be written

as

r�r�W � X; �2:8�

oX=os� �r �W� � rX � DX=Re�; �2:9�

oH=os� �r �W� � rH � DH=Ma�: �2:10�

The boundary conditions are as follows:

f � 0 and 1:

Wr � 0; Wh � 0; oWz=of � 0; �2:11�

Xr � ÿ o
of

oWr

of

�
ÿ oWz

on

�
;

Xh � o
of

oWh

on

�
ÿ 1

n
oWz

og

�
; Xz � 0; �2:12�

H�s; n; g; 0� � 0; H�s; n; g; 1� � f �s�; �2:13�
n � R�f�
Ws � 0; Wh � 0; $ �W � 0; �2:14�
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oH=on � 0; �2:16�
where the free surface is described as n � r=l � R�f� and

R�0� � R�1� � 1=�2A�, n and s are, respectively, the unit

vector in the normal direction of the free surface and in

the direction perpendicular to both n and azimuthal

direction of the free surface, and the heating curve in the

present paper is given by

f �s� � aTs; s6 T�=aTDT�;

T�=DT�; s P T�=aTDT�;

�
�2:17�

where the temperature T� and the heating rate aT are

constants. According to the de®nition, the ratio volume

of liquid bridge may be written as

V � 4A2

Z
R2�f�df:

Then, the problem described by Eqs. (2.8)±(2.10) with

boundary conditions (2.11)±(2.16) could be solved for

the case of given geometrical parameters A and V. The

initial condition relates to a static case of isothermal

liquid bridge, where the applied temperature di�erence is

zero. Boundary conditions (2.13) and (2.17) consist with

the initial condition. The usual case of a cylindrical

liquid bridge relates to the condition R�f� � 1=�2A� �
constant, and then V � 1.

3. Transient process in a fat liquid bridge

Based on the linear instability analysis of Chen and

Hu [21], the bifurcation feature is sensitively depended

on the volume ratio Vl=V0, and a steady and axial

asymmetric instability mode m � 1 and xi � 0 is ob-

tained for case of Pr � 100, Vl=V0 � 1:2 and A � 0:6.

This result shows that, the instability in this case is as-

sociated with the transition from the steady and axi-

symmetric thermocapillary convection to a steady and

asymmetric convection. The linear instability analysis

can only give the ®rst instability deviated from the basic

state, and the second bifurcation for the onset of oscil-

lation can only be performed by the numerical simula-

tion of unsteady and three-dimensional model.

The problem is solved numerically by the ®nite ele-

ment method (FEM), with the cell numbers in the r, h
and z directions are, respectively, 12, 16 and 12, and

hence, the ¯oating half zone is divided into 10758

tetrahedron elements associated with 2064 nodes. The

nonlinear convective terms in the vorticity equation and

energy equation are calculated by the characteristic line

method, and the di�usion terms are calculated by the

FEM.

The thermocapillary convection in a liquid bridge of

12 mm in height and 15 mm in diameter is discussed in

case of microgravity environment. The dimensional

heating rate and reference temperature are adopted, re-

spectively, as 0.05°C/s and DT� � 25°C. The thermo-

capillary convection will be driven from the static state

of zero temperature di�erence DT � 0 at the beginning

to the oscillatory state related to the larger temperature

di�erence DT > �DT �c. Typical evolutionary process of

temperature and velocity in a slender liquid bridge, for

example Vl=V0 � 0:8, during the increasing of the applied

temperature di�erence was shown clearly in Fig. 3,

Fig. 3. The onset of oscillatory convection from the steady and

axi-symmetric convection in a slender liquid bridge of ¯oating

half zone (l=d0 � 0:8, Vl=V0 � 1:025).
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where the temperature evolutions are given at four

points h � 0, p/2, p and 3p/2 on the free surface of the

liquid bridge in a cross-section f � 0:55. Four curves of

surface temperatures coincide before the onset of oscil-

lation, and then separate to a phase di�erence of p/2 one

by another. The results show clearly the onset of oscil-

latory convection from the steady and symmetric state

to oscillatory convection, and there is only one bifur-

cation of transition in the slender liquid bridge.

Similar analysis is applied to the case of a fat liquid

bridge Vl=V0 � 1:025, which relates to the right curve of

Fig. 9. The evolutionary processes of the azimuthal

velocity components and the temperatures on the free

surface in a cross-section f � 0:55 are shown in the up-

per and lower of Fig. 4. Four evolutionary pro®les at the

boundary of a cross-section are not overlapped together

before the onset of oscillation, and change slowly with

time. The results of Fig. 4 mean that two bifurcation

transitions appear during the increasing of applied

temperature di�erence, and there is a period related to

the quasi-steady and axial asymmetric convection before

the onset of oscillation.

For the quantitative description of the ®rst bifurca-

tion, the non-axisymmetric degrees are introduced, re-

spectively, for azimuthal velocity and temperature as

follows:

dV � Vmax ÿ Vmin

V �
; DT � Tmax ÿ Tmin

DT
; �3:1�

where subscript max and min denote, respectively, the

maximum and minimum values on the free surface of a

cross-section f � 0:55, V and T are, respectively, the

azimuthal component of velocity and temperature, and

V � is the maximum velocity in the liquid bridge at a

certain applied temperature di�erence Dt. Both dT and

dV are zero in the axisymmetric convection, and increase

gradually during the onset of the ®rst bifurcation, which

relates to the transition from the steady and symmetric

convection to the quasi-steady and axial asymmetric

convection. Evolution of the non-symmetric degree dV

and dT are given in Fig. 5, which shows clearly the two

processes of the onset of steady and axial asymmetric

states and the onset of oscillatory states. The ®rst critical

applied temperature di�erence dTc1
may be de®ned by

the moment when dT equals 0.02, and the critical value is

DTc1 � 0:773°C: �3:2�

Fig. 4. The transient feature of two bifurcation given by the

temperature (upper) and azimuthal velocity (lower) in a fat

liquid bridge of ¯oating half zone (l=d0 � 0:8, Vl=V0 � 1:025).

Fig. 5. The transient process described by the parameters dV

and dT in a fat liquid bridge (l=d0 � 0:8, Vl=V0 � 1:025).
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The second bifurcation for the onset of oscillatory

convection from the quasi-steady and axial asymmetric

convection may be given as usually by the oscillatory

amplitude, and it gives

DTc2 � 4:78°C: �3:3�

Two critical values of the applied temperature

di�erence associate with two corresponding critical

Marangoni values, i.e.

Mac1 � 628:67; Mac2 � 3886:68: �3:4�

The results give two critical transients of thermo-

capillary convection in a fat liquid bridge of larger

Prandtl number, similar to the one in a cylindrical liquid

bridge of small Prandtl number as given by Levenstam

and Amberg [19]. However, the onset of bifurcation in

case of larger Prandtl number will be induced obviously

by both the hydrodynamic and thermal e�ects, not only

by the hydrodynamic e�ect as suggested in the case of

low Prandtl number. Furthermore, the conclusion on

appearance of ®rst bifurcation agrees with the results of

linear instability analysis, given by Chen and Hu [21],

that is, the steady and axisymmetric thermocapillary

convection may be unstable as composed to a steady and

axial asymmetric thermocapillary convection. The con-

clusion of present paper does not support the mech-

anism of hydrothermal instability, which requires a

traveling wave.

4. The ®rst bifurcation in a fat liquid bridge

The states of thermocapillary convection respond to

a ®xed heating rate of 0.05°C/s is discussed in Section 3,

and a quasi-steady and axial asymmetric convection has

been obtained. The steady and axial asymmetric con-

vection is bene®cial to understanding the ®rst bifurca-

tion, and may be obtained if the applied temperature

di�erence is given specially. Based on the results of Eqs.

(3.2) and (3.3), the quasi-steady and axial asymmetric

convection is in the temperature range 0:778°C <
DT < 4:78°C.

To discuss the ®rst bifurcation in details, a heating

process is designed to keep the temperature di�erence

DT falls in the region of steady and axial asymmetric

state, and DT is adopted as DT � 3:5°C as an example.

In this case, the applied temperature di�erence increases

from zero at the beginning to 3.5°C at 70 s, and then

keeps at the 3.5°C afterwards. The evolutionary azi-

muthal velocities and temperatures at four points h � 0,

p/2, p and 3p/2 on the free surface at cross-section

f � 0:55 are show in Fig. 6, and the steady and axial

asymmetric thermocapillary convection is persisted in a

long period of only slowly variation, for example over

201 s. This results mean that, the steady and axial

asymmetric convection is a real state, which may be

persisted in a long period.

The temperature distributions and the velocity dis-

tributions in the fat liquid bridge Vl=V0 � 1:025 at

DT � 3:5°C are given, respectively, in Figs. 7 and 8 at

the moment t � 156:9 s (left ®gures) and t � 201:4 s

(right ®gures). The distributions of the steady and axial

asymmetric convection keep nearly the same during

the process. The steady and axial asymmetric mode in

Figs. 7 and 8 relates to m � 1, and this conclusion agrees

with the result of the linear instability analysis given by

Chen and Hu [21].

5. The transient processes of di�erent volume-ratio liquid

bridge

The critical temperature di�erences depending on the

volume ratios of the liquid bridge with A � 0:8 are given

in Fig. 9. DTc1 is de®ned as the ®rst critical temperature

di�erence related to the transition from steady and axi-

symmetric convection to the three-dimensional and

steady convection, and DTc2 is the second critical tem-

perature di�erence from three-dimensional and steady

convection to the three-dimensional, oscillatory con-

Fig. 6. The evolutions of azimuthal velocity (upper) and tem-

perature (lower) for a ®xed temperature di�erence DT � 3:5°C

after a heating process with heating rate � 0:05°C/s in a fat

liquid bridge (l=d0 � 0:8, Vl=V0 � 1:025).
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Fig. 8. The steady and axial asymmetric distribution of velocity in a fat liquid bridge (l=d0 � 0:8, Vl=V0 � 1:025, DT � 3:5°C): (a) the

¯ow ®eld in the vertical section 0±180° (upper), and (b) the distribution of azimuthal velocity (lower) in the section z=l � 0:55.

Fig. 7. The steady and axial asymmetric distribution of temperature in a fat liquid bridge (l=d0 � 0:8, Vl=V0 � 1:025, DT � 3:5°C): (a)

the temperature distribution in the vertical section 0±180° (upper), and (b) the temperature distribution in the section z=l � 0:55

(lower).
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vection. In the case of the slender liquid bridges, the

steady and axisymmetric convection transits directly to

three-dimensional, oscillatory convection, and hence,

DTc1 � DTc2. These results are consistent with those ob-

tained by the experiments. In the case of the fatter liquid

bridge, there are two bifurcations, and DTc1 6� DTc2.

The dependence of critical applied temperature dif-

ference DTc on the liquid bridge volume is described by

the second bifurcation DTc2 as usual. The feature of

onset oscillation is thence divided into two branches

separated by the peak, the slender and the fat liquid

bridge branches, see for example, [3,9]. In the present

case, The curve of second critical temperature di�erence

DTc2 obtained in the calculation for the case of the os-

cillatory convection coincides qualitatively with the

usual experimental results. Based on Fig. 9, the feature

may be described by two branches, that is the slender

and the fat liquid bridge branches separated by having

only one bifurcation and two bifurcations. Then, the

peak distribution is included in the fat bridge of liquid

bridge.

6. Discussions

For checking the present numerical method, the

results of thermocapillary convection in a cylindrical

liquid bridge with g � 0 and l=d0 � 10 is compared with

those obtained from linear stability analysis for in®nite

length, cylindrical liquid bridge and calculated by using

three-dimensional, axisymmetric program. The results

coincide quite well, except that there is 14% error at the

meshes near the free surface. Another comparison is

shown in Fig. 10. It shows the core velocity pro®le for

buoyancy convection in a horizontal cylinder calculated

by using the present program is consistent with the re-

sults of Bejan et al. [22] very well.

The onset of oscillatory thermocapillary convection

in a fat liquid bridge of ¯oating half zone of geometrical

aspect ration A � 0:8 and volume ratio Vl=V0 � 1:025

has been analyzed for 10 cst silicon oil of larger Prandtl

number. There is only one bifurcation transition in the

¯oating half zone convection for cases of the slender

liquid bridge, but may have two bifurcation transitions

for a fat liquid bridge. The ®rst bifurcation transition is

from the steady and axisymmetric convection to a steady

and axial asymmetric convection, and then the second

bifurcation transition relates to the transition from the

steady and axial asymmetric to the oscillatory convec-

tion. These results show that, the rout of transition is

from the steady and axi-symmetric convection via the

steady and axial asymmetric convection to the oscilla-

tory convection during the increasing of applied tem-

perature di�erence in a fat liquid bridge. The coupling

between temperature and velocity ®eld is strong in this

case because of the larger Prandtl number. The conclu-

sion of the present paper does not agree with the hy-

drothermal instability, which relates with a traveling

wave but not a steady state.

The studies of three-dimensional and time-dependent

numerical simulation show that, the transition processes

with two bifurcation appear in the critical region, which

is de®ned by relatively smaller aspect ratio A and rela-

tively larger volume ratio Vl=V0. A branch of fat liquid

bridge with two bifurcation was obtained for a geo-

metric aspect ratio A � 0:8.

The conclusion of present paper implies that, the

geometrical parameter Vl=V0 is not only a sensitive crit-

ical parameter for onset of oscillatory thermocapillary

Fig. 10. The axial-velocity pro®le of the buoyancy convection

in a azimuthal cylinder, z=l � 0:55.

Fig. 9. The relation of the critical temperature di�erence and

the volume ratio.
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convection, but is also important in studies of the

mechanism which induces the di�erent sort of bifurca-

tion.
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